If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+16X+55=3
We move all terms to the left:
X^2+16X+55-(3)=0
We add all the numbers together, and all the variables
X^2+16X+52=0
a = 1; b = 16; c = +52;
Δ = b2-4ac
Δ = 162-4·1·52
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{3}}{2*1}=\frac{-16-4\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{3}}{2*1}=\frac{-16+4\sqrt{3}}{2} $
| 10x-2(7x-6)+29=1/6(24x+54) | | 129.55+31.45=m | | 6-6m+5=-10-9 | | -27b-56=b-1316 | | 12+3k=-45 | | n3+n=990 | | 3(2x+8)=2(x+16) | | (2/3)x+9=21 | | -10c+3=-10-9c+9 | | -3(-4+7x)=264 | | 2a-4/5=3a+1/7 | | 5(1+x)7=8 | | 9g-8=-26 | | -6+10p=8p+10 | | 8(x-20)=4(x+20) | | -5q-10=-4q | | 7x+2x=8+3 | | -8q=-7q+3 | | -8q=-7q | | 1.38=p+2.54 | | -7k+1=8-6k | | 2^x-5=9 | | 3(x+10)=x+6 | | a-99=5a-27 | | 5(q-10)=45 | | 0=9(k-2/3)+3/ | | 15x/30=120 | | -4w=-10-5w | | X+18.7=197.7-x | | 21+n=22n | | -15w-4=-2 | | j-826=-20j-7 |